
技術センター及び資材センターへのアクセス

技術センターへのご案内

▶電車をご利用の場合

西武新宿線「新所沢駅」下車駅西口からタクシーで約7分

▶車をご利用の場合

大型車ご利用又は東京方面からお越しの方

所沢ICを降り、国道 463 号を 所沢市街地方面へ進む→「松郷」交差点を右折し 川越方面へ→約 3km 先、ローソンがある交差点を左折、 その先の T 字路を右折し、道なりに約 3km 進む→ 「北岩岡」交差点手前、左手に技術センター

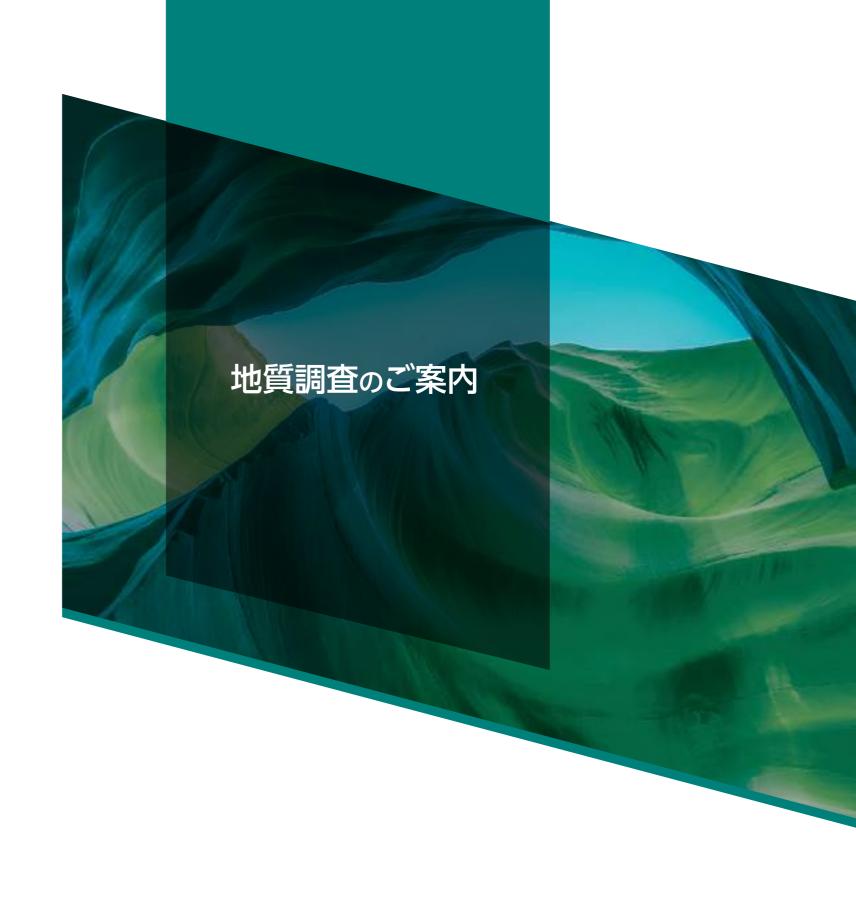
新潟方面からお越しの方

三芳スマートICを降り左折→ 右手に埼玉セントラル病院を見ながらT字路を右折→ その先のローソンの交差点を右折→ 道なりに約 4km 進み、T字路を右折→ 道なりに約 3km 進むと「北岩岡」交差点手前、 左手に技術センター

資材センターへのご案内

▶電車をご利用の場合

西武新宿線「新所沢駅」下車 駅東口からタクシーで約15分


▶車をご利用の場合

大型車ご利用又は東京方面からお越しの方

所沢IC を降り、国道 463 号を 所沢市街地方面へ進む→「松郷」交差点を 右折し川越方面へ→約 3km 先、ローソンがある 交差点を右折し、道なりに約 500m 進むと 右手に資材センター

新潟方面からお越しの方

三芳スマート IC を降り左折→ 右手に埼玉セントラル病院を見ながら T 字路を右折→ その先のローソンの交差点を右折→ 道なりに約 3km 進むと、所沢リハビリテーション病院手前、 左手に資材センター

技術センター

〒 359-0007 埼玉県所沢市北岩岡 296-1 TEL: 04-2990-1009 FAX: 04-2943-4238

スタートは地質調査から

各種の構造物、建築物が地盤に設置する限り、地盤とこれら構築物は、

一体のものとして、あらゆる点で密接な関係にあります。

特に最近では構造物の大型化、過密化さらに基礎工法・施工法の発達により、

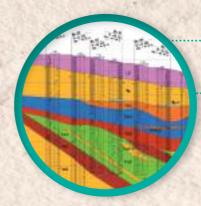
その関連性は複雑さを増しています。

環境問題等の条件も絡み、今後も地質調査の重要性はますます高くなっていきます。

業務案内

ボーリング調査

- ▼ 地質調査資料収集(資料・地形・地表探査)
- ▼ ボーリング調査
- **☞** 原位置試験(標準貫入試験、孔内水平載荷試験)
- サンプリング
- ▼ 孔内検層 (速度、電気、密度検層)
- ▼ 孔内探査(地中ガス、JFT、流向流速、ボアホールスキャナー)


現場試験および探査

- ▼ 載荷試験
- ▼ 各種サウンディング
- ▼ 現場密度試験
- ▼ 物理探査 (弾性波、電気探査)

土壌・地下水調査

- ▼ 地歴調査
- 土壌汚染調査(概略、詳細調査)
- ▼ 地下水調査
- ▼ 観測井設置

解析・検討

- ▼ 地盤の支持力沈下変位解析
- 一 斜面・崩壊地すべり安定解析
- ▼ 液状化の検討
- ▼ 地盤改良の検討

ボーリング調査

ボーリング調査の主たる目的は、対象となる地盤の成層状態を明らかにすることにあり、このボーリング作業により地層の状 況を観察し、土質試験を行うための試料を採取し、さらに各種原位置試験、孔内検層を行うための試験孔として利用します。 ボーリング方法は、予想される地質構成や現場環境により選択されますが、現在では油圧式ロータリーボーリングマシンによ る地盤調査が主流となっています。

現地の状況に応じて、さまざまな仮設が可能な調査方法です。

平坦地ボーリング

水上ボーリング

傾斜地ボーリング

屋内ボーリング

山岳部ボーリング

索道搬入状況

所には、モノレール・索道運搬方法を使用し、 ボーリングマシン等の機材を運びます。

モノレール搬入状況

岩盤採取コア状況

原位置試験

調査の目的に応じて、多種多様な試験をご提供いたします。

標準貫入試験(N値)

サウンディングの中で最も普及している動的試験で JIS 規格 化されています。地盤の硬軟、締まり具合または土層の構成 を判定するための N 値を求めるとともに、物理試験を行うた 法で、回復法・注入法等があります。 めの乱した試料を採取することができます。

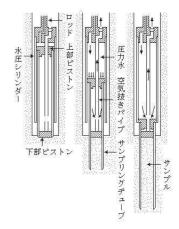
普通載荷(LLT)

現場透水試験

ボーリング孔を利用して、所定区間での孔内水位の変化を 一定時間測定することにより、透水係数を求めるための方

透水係数は、地下掘削時における、湧水量や水位低下量の 算定、工事などの設計などにも用いられる重要な値です。

高圧載荷(エラストメーター)


孔内水平載荷試験

ボーリング孔を利用して、現地盤の水平方向の変形特性を調 べる試験です。地盤状況に応じて、普通・高圧などの各種試 験方法を行います。

ロータリー式ボーリングマシンを用いて、地盤 に応じた各種採取方法で、所定の深度の土を 的確に採取いたします。

この試料は、室内土質試験に用いられます。

水圧式サンプラーによる試料採取の概念図

サンプラーの種類と適用地盤

	地盤の種類							
サンプラーの種類	粘性土		砂質土			T/LT909	LLI av	
	軟質		硬質	ゆるい		密な	砂礫	岩盤
シンウォール	0	0	0	0				
ロータリー式二重管		0	0					
ロータリー式三重管		0	0	0	0	0		
ロータリー式スリーブ内臓		0	0		0	0	0	0

各種サンプラーの特徴

	サンプラーの種類	ピストンの状態	必要な孔径	概略適応土性	特徵
シンウォ	固定ピストン式 シンウオール サンプラー	固定	85 mm以上	軟弱な粘性土N値O〜4	土質工学会基準案のサンブラーである。軟弱な粘性土の乱さない試料のサンプ ラーとして信頼度が最も高く、一般に使用されている。
オール	水圧ピストン式 シンウオール サンプラー	固定	110 mm以上	軟弱な粘性土、緩い砂質土 N値0~4	ピストンロッドはサンブラーヘッドに固定される。サンブラー押込み時、水圧によりロッド(ピストンも)が押し上げられやすい。
二重管	デニソン型 サンプラー	なし	シンウォール チューブの場合 115 mm以上	硬質粘性土N値4~15	内管はオープンドライブサンブラーの働きをし、外管は回転して地盤を掘削する。 固結砂質土に対しても適用できる可能性がある。刃先の調節、操作がデリケート。 内管の歪が大きい場合がある。
三重管	トリプル サンプラー	なし	115 mm 以上	刃先の交換でN値=3~50 以上の粘性土、砂質土	ダブルコアチューブの内管に、サンブルチューブを内蔵した三重管構造で、刃先を スプリングで押込みながら試料を採取する。刃先の交換によって、中位~固結した 粘性土、砂質土まで適応範囲は広い。
7	リーブ内蔵二重管	なし	66 mm以上	刃先の交換で中位〜固結 した土砂地盤、岩盤	デニソン型サンブラーとほぼ同じ構造で、コアをコアチューブ内に送り込む時点で、ブラスチックフィルム製のスリーブに包み込みながら採取する。刃先をダイヤモンドビットにするとことで、岩盤まで対応可能である。

孔内検層

速度検層

ボーリング孔内にセンサーを入れ、地盤の物性変位を測定するもので、地表で振動を起こし孔内で受信するダウンホール方式と、同一孔内で起振し受信する孔内起振受信方式とがあります。

測定した速度と密度からポアソン比・せん断弾性係数などが求められ、地盤の硬軟、岩盤の亀裂状況を把握するためなどに用いられます。

電気検層

ボーリング孔内に電極を入れて地層の電気 抵抗や自然に発生している電位を測定する 原位置試験です。

種類としては、ノルマル検層・マイクロ検 層などがあり、地層の厚さや連続性、帯水 層の検出などに用いられます。

現場試験

構造物築造に際しては、そこの地盤が計画構造物の荷重に対して十分な地耐力(支持力)を有しているかを評価するため、地盤の強度を直接計測する多種多様な現場試験が行われます。近年では、宅地造成や宅地地盤において、スクリューウエイト貫入試験や地盤の平板載荷試験が広く用いられています。

平板載荷試験

半自動式スクリューウエイト貫入試験

スクリューウエイト貫入試験は、土の締まり具合を判定するとともに、軟弱層の厚さや分布を把握するための試験であり、測定結果から換算式を用いて、N値や許容支持力(地耐力)を求めることができ、一般住宅における地盤評価などを行うために多く利用されます。

平板載荷試験は、計画構造物の基礎底面付近の地盤に載荷板を通じ、直接計画構造物荷重以上の荷重を加え、この荷重の大きさと沈下量の関係から、支持力特性を調べる試験であり、擁壁の築造工事等に多く利用されます。

土壤·地下水調査

弊社では、豊富な地質調査の経験と技術を生かし、土壌・地下水調査に取り組んでいます。

弊社は、環境大臣指定による土壌汚染調査を行う 指定調査機関 です。

地歴調査~表層土壌調査~絞り込み調査~詳細(深度・地下水)調査から、対策工の提案まで一括して実施できます。 分析試料の採取は、無水・バイブレーション方式により、迅速で高品質な試料採取ができます。

ECO-1V機

幅が小さく、機動性に優れる。一般土質調査も可能。

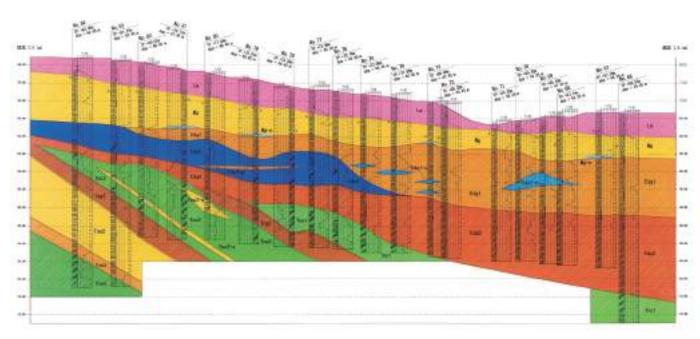
掘削径	φ66~116 mm			
掘削深度	20 m、10 m以浅が最適			
	幅1.00m 長さ2.75m			
本体形状	高さ 作業時 3.15 m			
	移動時 2.30 m			

エコプローブ機

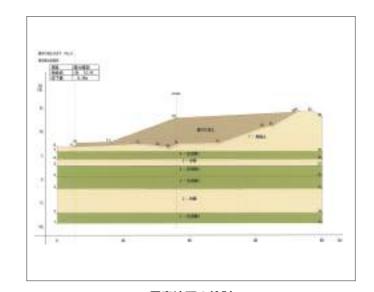
礫、コンクリート等の障害物も掘削可能。井戸設置に適する。

掘削径	φ66~130 mm			
掘削深度	30 m、20 m以浅が最適			
	幅1.60 m 長さ2.60 m			
本体形状	高さ 作業時 3.25 m			
	移動時 2.20 m			

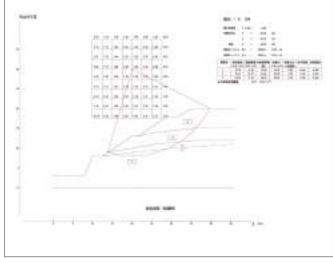
サンプリング試料



試料分取状況


揮発性汚染物質でも、気化を防ぎパック詰めの試料を連続的に採取できます。

解析·設計

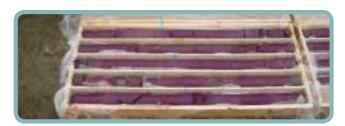

地質調査の結果は、既存の資料調査のデータと併せ地質断面図にまとめ、各地層の計測値、土性値の整理・分析をおこないます。 さらに、対象地における築造物の計画について、地盤工学的な問題点を抽出します。この問題点について、地盤の支持力・沈下、 地震時の液状化、すべり破壊に対する安定性、水理的な考察等の総合技術解析をおこない、適切な処理工法および今後の調査・ 施工管理についての提案をおこないます。

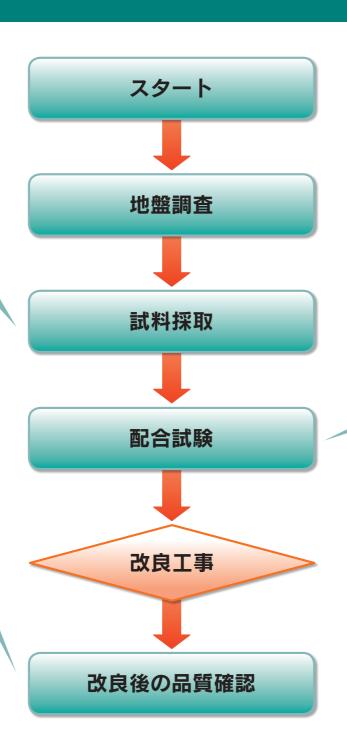
地質推定断面図

斜面安定解析

地盤改良に伴う調査

弊社では軟弱地盤での試料採取、採取した試料を用いた配合試験、改良後の品質確認など、地盤改良工事に付随する一連の 作業をバックアップいたします。


地盤改良の流れ


試料採取 無水・バイブレーション機能を搭載した、自走式土壌採取マシン により、所定の深度(改良対象層)の土を採取いたします。

改良後の地盤よりロータリー式ボーリングマシンを用いてコア 試料採取を行い、品質確認のための試験を行います。

フェノールフタレイン溶液による呈色確認

固化材添加

供試体作製

一軸圧縮試験

施工条件に応じた室内配合試験を行います。

応力 - ひずみ曲線

主要機械及び測定器設備 一

●ボーリングマシンおよび車輌関係

	名称	仕様及び備考	台数
ボ	ハンドフィード	50 m型	1
リ盟		50 m型	2
ーリングマシン地質調査用	油圧フィード	100 m型	3
シ冊		250 m型	1
ボ土マー壌	ECO-1V機	振動回転式20 m型	1
シリ環 ンン境 グ用	エコプローブ機	振動回転式30 m型	1
オーガー	φ60~200 mm	-	6

	名称	仕様及び備考	台数
運		4.9 t積み	1
運搬車両	クレーン付トラック	3.7 t積み	2
両		3.0 t積み	3
小運	ゴムキャタ式クローラー	200~800 kg積み	2
小運搬機	モノレール	200 kg積み	1

●各種機材

	名称	仕様及び備考	台数
	標準貫入試験装置	JIS規格	6
原位	孔内水平載荷試験装置	普通型(LLT)	4
原位置試験器	九內小干戰何武殿表直	高圧型(エラストメーター)	1
験 器	湧水圧測定器	JFT	1
	地中ガス濃度測定器	GX111型	1
サンプラー	固定ピストン式シン	エキステンションロッド式	1
	ウォールサンプラー	水圧式	3
	ロータリー式二重管 サンプラー	デニソン型	4
	ロータリー式三重管 サンプラー	トリプルサンプラー	4
	ロータリー式スリーブ内 蔵二重管サンプラー	φ66 mm, φ86 mm	4

	名称	仕様及び備考	台数
	速度検層器(PS検層)	-	1
物	電気検層器	-	1
物理検層	密度検層器	-	1
	温度検層器	-	1
	キャリパー検層器	-	1
測	光波測距儀	20秒読み	1
測量用具他	オートレベル	-	4
他	地表踏査器具	現地調査用	2

●その他の現場試験装置

	試験機器	仕様及び備考	台数
IJ	簡易動的コーン貫入試験機	-	1
サウンディング	スクリューウエイト貫入	手動式	1
アイン	試験装置	半自動式	3
グ	ポータブルコーン貫入試験機	単管式	2
透水	マリオットサイフォン	φ 150 mm	10
		20 kN	2
載荷	環状リング (平板載荷・現場CBR)	50 kN	2
	(100 kN	1

	試験機器		仕様及び備考	台数
	ベースプレート	砂置換	-	6
		突き砂	φ 150 mm	3
密			φ250 mm	3
密度			φ300 mm	3
	コアカッター用	器具一式	-	-
	水置換用シート		-	-

室内試験一覧 ——

	試験名	規格/基準番号
	土粒子の密度試験	JIS A 1202
	土の含水比試験	JIS A 1203
	土の粒度試験	JIS A 1204
	石分を含む地盤材料の粒度試験	JGS 0132
物理試験	土の細粒分含有率試験	JIS A 1223
	土の液性限界・塑性限界試験	JIS A 1205
	土の収縮定数試験	JIS A 1209
	土の湿潤密度試験	JIS A 1225
	砂の最小密度・最大密度試験	JIS A 1224
	土懸濁液のpH試験	JGS 0211
化学試験	土懸濁液の電気伝導率試験	JGS 0212
	土の強熱減量試験	JIS A 1226
	骨材のふるい分け試験	JIS A 1102
	骨材の微粒分量試験	JIS A 1103
	骨材の単位容積質量及び実績率試験	JIS A 1104
	細骨材の密度及び吸水率試験	JIS A 1109
	粗骨材の密度及び吸水率試験	JIS A 1110
骨材試験	細骨材の表面水率試験	JIS A 1111
	ロサンゼルス試験機による粗骨材の すりへり試験	JIS A 1121
	硫酸ナトリウムによる骨材の 安定性試験	JIS A 1122
	骨材中に含まれる粘土塊量の試験	JIS A 1137
	コンクリートの圧縮強度試験	JIS A 1108
コンクリート	コンクリートの割裂引張強度試験	JIS A 1113
	コンクリートの中性化深さの測定	JIS A 1152
	室内配合試験に関わる各種試験	

その他、特殊な試験にも対応させていただきますので、ご相談下さいませ。

	試験名	規格/基準番号
	土の段階載荷による圧密試験	JIS A 1217
透水·圧密	土の透水試験	JIS A 1218
	土の一軸圧縮試験	JIS A 1216
	土の非圧密非排水(UU)三軸圧縮試験	JGS 0521
	土の圧密非排水(CU)三軸圧縮試験	JGS 0522
変形·強度	 土の圧密非排水(CU)三軸圧縮試験	JGS 0523
試験	土の圧密排水(CD)三軸圧縮試験	JGS 0524
	土の繰返し非排水三軸試験	JGS 0541
	土の変形特性を求めるための 繰返し三軸試験	JGS 0542
	突固めによる土の締固め試験	JIS A 1210
安定化試験	締固めた土のコーン指数試験	JIS A 1228
	CBR試験	JIS A 1211
	岩石の弾性波速度計測(パルス透過法による岩石の超音波速度測定)	JGS 2564 (JGS 2110)
	岩石の吸水膨張試験	JGS 2121
	岩石のスレーキング試験	JGS 2124
	岩石の密度試験 (岩石の密度・吸水率・有効間隙率試験)	JGS 2132
	岩石の一軸圧縮試験	JGS 2521
	岩石の非圧密非排水(UU)三軸圧縮試験	JGS 2531
岩石試験	軟岩の圧密非排水(CU)三軸圧縮試験	JGS 2532
	軟岩の圧密非排水(CU)三軸圧縮試験	JGS 2533
	岩石の圧密排水(CD)三軸圧縮試験	JGS 2534
	岩石による圧裂引張り試験	JGS 2551
	岩石の点載荷試験	JGS 3421
	破砕性判定のための岩石の破砕試験	試験法 109
	岩石の促進スレーキング試験	試験法 110
	乾湿繰返しによる岩石の吸水率試験	試験法 111

3